

Characterization and Development of Measurement Methods for Ambient Nitrogen Dioxide (NO₂)

Melinda Beaver and Russell Long - ORD/NERL/HEASD/PMRB

Keith Kronmiller - Alion Science and Technology

Research Questions and Motivation:

- How do direct, optical measurements of NO₂ compare with the Federal Reference Method and photolytic conversion techniques?
- What is the optimum method for calibration and span/zero checks for each type of monitor (Gas Phase Titration of NO vs bottled NO₂)?
- EPA's ORD interest in accurate NO₂ measurements supports:
 - Reference and equivalent method determinations and evaluations
 - EPA's monitoring networks
 - Ground-based satellite validation work with NASA

Outline

- I. NO₂ sources, trends, and regulations
- II. Gas-phase chemiluminescence measurement methods:
 - Federal Reference Method
 - b. Photolytic conversion
- III. Direct, optical techniques:
 - a. Cavity ringdown spectroscopy (CRDS)
 - b. Cavity attenuated phase shift (CAPS)
- IV. Results from DISCOVER-AQ Campaign
- V. Preliminary Results from RTP, NC

Atmospheric nitrogen families

$$NO_x = NO + NO_2$$
 "nitrogen oxides"

$$NO_y = NO_x + HNO_3 + ...$$
 "total reactive nitrogen"
 $HONO + RONO_2 + RO_2NO_2 + NO_3 + N_2O_5 + NO_3$ (p)

$$NO_z = NO_y - NO_x$$
 "reacted oxides of nitrogen"

• NO₂ serves as the indicator species for the family of the oxides of nitrogen.

Current NO₂ Regulations

• Clean Air Act requires EPA to set National Ambient Air Quality Standards (NAAQS) for criteria pollutants:

NO ₂ Primary Standards					
level	averaging time	year implemented			
53 ppb	Annual	1971			
100 ppb*	1 hr	2010			

^{*} The new monitoring locations for the Jan 2010 primary standard will be sited in near roadway locations to capture areas of maximum concentration. (http://epa.gov/ttn/amtic/nearroad.html)

^{*} Continuous monitors capable of hourly data are now necessary.

What are the sources of NO_x?

Global (natural and anthropogenic):

anthropogenic (US):

- Primarily emitted as NO
- Emissions reductions aimed at mobile and point sources

Emissions of NO₂ are declining

- 48% decrease in the national average.
- Achieved by reducing NO_x for O_3 purposes (mobile and point source regulations).

How is NO₂ (currently) measured?

- Federal (Automated) Reference Method (40 CFR, Part 50, Appendix F):
 - -Gas-phase chemiluminescence
 - -Indirectly measure NO_2 by conversion to NO, then NO is detected by chemiluminescence ($NO + O_3 \rightarrow NO_2^*$, $NO_2^* = excited state$);

- -Advantage → in use since the 1970s (long term record)
- -Disadvantages → non-specific; indirect

Method has possible interferences

• Non-specific to $NO_2 \rightarrow$ heated metal catalysts known to convert

other NO_v species to NO.

 Considered an upper limit measurement of NO₂.

Method has possible interferences

• NO spikes \rightarrow The indirect determination requires a slowly changing NO_x distribution. Otherwise, negative spikes of NO₂ are possible:

Alternative Technique: Photolyticchemiluminescence

- Replace the metal bed reducer with a photolysis cell to photolyze NO_2 to $NO(NO_2 + hv \rightarrow NO + O)$.
 - -Use high-power light sources to maximize conversion to NO.

- Advantage → more specific to NO₂
- Disadvantages → non-unity conversion efficiency; still indirect

UV/Vis Spectroscopy of NO₂

- Cavity ringdown spectroscopy
 - instrument manufactured by Los Gatos Research, Inc.

$$N(cm^{-3}) = \frac{1}{c\sigma} \left(\frac{1}{\tau} - \frac{1}{\tau_0} \right)$$

- 10 s time resolution
- Advantage → DIRECT measurement
- Disadvantages → not-necessarily specific to NO₂, but to any molecule that absorbs light at 405 nm

- Cavity ringdown spectroscopy
 - instrument manufactured by Los Gatos Research, Inc.

- 10 s time resolution
- Advantage → DIRECT measurement
- Disadvantages → not-necessarily specific to NO₂, but to any molecule that absorbs light at 405 nm

- Cavity attenuated phase shift spectroscopy (CAPS)
 - instrument manufactured by Aerodyne Research, Inc.

- Advantage → DIRECT measurement
- Disadvantage \rightarrow not-necessarily specific to NO₂, but to any molecule that absorbs light at ~450 nm
- 2 versions: fast response (1 s) and ambient (10 s)

- Cavity attenuated phase shift spectroscopy (CAPS)
 - instrument manufactured by Aerodyne Research, Inc.

- Advantage → DIRECT measurement
- Disadvantage \rightarrow not-necessarily specific to NO₂, but to any molecule that absorbs light at ~450 nm
- 2 versions: fast response (1 s) and ambient (10 s)

NASA DISCOVER-AQ and EPA collaboration

- Supplement the existing local monitoring sites with NO_2 measurement technologies \rightarrow satellite validation.
- First deployment was July 2011 in/around the greater Baltimore/DC metro area.
- Deployed two NO_x monitors: one FRM and one photolytic-chemiluminescence

Results from Padonia, MD Ground Site

Preliminary Results from Padonia, MD Ground Site

$$\Delta NO_2 = NO_2 _FRM - NO_2 _photo$$

• The interference in the FRM monitor over predicts by ~50% during the hours surrounding noon.

Preliminary Results from Padonia, MD Ground Site

$$\Delta NO_2 = NO_2 _FRM - NO_2 _photo$$

• The interference in the FRM monitor over predicts by ~50% during the hours surrounding noon.

EPA's AIRS site, RTP, NC

• Currently conducting an intercomparison of direct optical, photolytic conversion, and FRM monitors throughout the summer months.

- Site operational with all monitors starting in mid February 2012.
- Glass inlet, 5 m AGL, all instruments sample from common sampling manifold.

Monitors Tested

Manufacturer and Model	Operation Principle	FRM/FEM status	
Teledyne T200U	Moly-chemiluminescence	FRM	
Teledyne 200EUP	Photolytic-chemiluminescence	FEM (application approved, designation imminent)	
Aerodyne CAPS (both versions: fast response and ambient)	Cavity attenuated phase shift		
Los Gatos Research CRDS	Cavity ringdown spectroscopy		

Instrument Specifics

Manufacturer and Model	Size (h x w x l)	weight (lbs.)	Power (W)	Sample flow, vol (Lpm)	Cost (\$USD)
Teledyne T200U	7"x 17"x 24"	55	500	1.0	~16K
Teledyne 200EUP	7"x 17"x 24"	61	600	1.1	~25K
Aerodyne CAPS (both versions: fast response and ambient)	9"x 17"x 26"	27	<100	0.9 (ambient) 4.5 (fast)	~25K
Los Gatos Research CRDS	7"x 19"x 24" (plus external drier)	60	100	0.9	~30K

Nightly span/zero cycle

March 2012 Span/Zero checks

24

Instruments within 15% of low span check and within 10% of high span check.

Initial Performance Characterization

• EPA's AIRS site – RTP, NC; March 2012

Operational Experiences

Manufacturer and Model	Data Interface/Accessibility	Calibration Procedures	
Teledyne T200U		- zero, high NO span to set slope and offset	
Teledyne 200EUP	- easily interfaced to our Envidas Ultimate data logger	 zero, high NO span to set slope and offset; then determine conversion efficiency using NO₂ 	
Aerodyne CAPS (both versions: fast response and ambient)	 Currently not interfaced with our data logger; operates using Aerodyne software which generates .txt files (comma delimited) 	 Multipoint calibration periodically suggested to compare with factory calibration. Manual baseline check required weekly. 	
Los Gatos Research CRDS	- Can be interfaced with data logger via the provided 0-5V analog out signal; however no 'status' flag provided (yet); using .txt files generated by the instrument (tab delimited)	- Automatically checks the baseline signal at user defined interval; no further calibration required.	

United States Environmental Protection

NO₂ Research Initiatives and Next Steps

ORD's Current Initiatives for NO₂ (FY12- FY15) include:

- Method inter-comparison through the summer
 - Including detailed NO_y and reduced nitrogen speciation to look at potential interferences
- Develop calibration procedures for direct measurement techniques
 - NO₂ cylinder vs GPT
- Detailed laboratory based assessments
 - Interference testing
 - 40 CFR part 53 subpart B performance testing
- Develop and document performance criteria including calibration and challenge procedures
- Evaluate optical monitors in a near-roadway environment

Acknowledgements

EPA

- -Jim Szykman
- -David Williams
- -Richard Baldauf
- -Surender Kaushik

Arcadis

-Parik Deshmukh

Aerodyne Research, Inc.

Teledyne API

Los Gatos Research, Inc.

Disclaimer:

Although this work was reviewed by EPA and approved for presentation, it may not necessarily reflect official Agency policy.